Schrödinger eigenvalue problem for the Gaussian potential
نویسندگان
چکیده
منابع مشابه
the algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولGaussian Quadrature and the Eigenvalue Problem
where the nodes xk belong to the range of integration and the weights wk are computable. For example, this kind of formula always results when f̂ is a polynomial of degree less than n that interpolates to f at the nodes; i.e., f̂ (xk) = f (xk) for k = 1, . . . ,n. As we show below, once the nodes xk are fixed, it is easy to choose the weights wk so that if f is any polynomial of degree less than ...
متن کاملNonclassical Eigenvalue Asymptotics for Operators of Schrödinger
which depends on the volume u)n of the unit sphere in R n and the beta function. Assuming /3 < 2 we see that integral (2) becomes divergent if V (x) vanishes to a sufficiently high order. The simplest such potential is V(x,y) = \x\\y\P o n R n + R m . The Weyl (volume counting) principle, when applied to the corresponding Schrödinger operator — A-hV(x), fails to predict discrete spectrum below ...
متن کاملOn the nonnegative inverse eigenvalue problem of traditional matrices
In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.
متن کاملThe Eigenvalue Problem: Perturbation Theory The Unsymmetric Eigenvalue Problem
The Unsymmetric Eigenvalue Problem Just as the problem of solving a system of linear equations Ax = b can be sensitive to perturbations in the data, the problem of computing the eigenvalues of a matrix can also be sensitive to perturbations in the matrix. We will now obtain some results concerning the extent of this sensitivity. Suppose that A is obtained by perturbing a diagonal matrix D by a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applications of Mathematics
سال: 1977
ISSN: 0862-7940,1572-9109
DOI: 10.21136/am.1977.103692